第一天
人工智能与药物发现用工具的介绍与安装
从CADD到AIDD的介绍
1.计算机辅助药物设计(CADD)简介
1.2.分子对接与分子动力学背景介绍
1.3.人工智能药物发现(AIDD)简介
2.机器学习与深度学习在药物发现中的背景介绍
2.1药物发现与设计
2.2基于结构的药物发现与设计
2.3基于配体的药物发现与设计
3.1Anaconda3/Pycharm安装
3.2python 编程基础
3.3Pandas基础
3.4NumPy基础
3.5RDKit基础
3.6Pytorch基础
3.7Tensorflow基础
3.8DeepChem基础
第二天
机器学习与药物发现(分类任务)
1.分类模型的构建与应用
1.1逻辑回归算法原理
1.2朴素贝叶斯算法原理
1.3k最近邻算法原理
1.4支持向量机算法原理
1.5随机森林算法原理
1.6梯度提升算法原理
1.7多层感知机算法原理
1.8特征工程
1.9缺失值填补
2.特征归一化
2.1变量筛选
2.2模型评估方法
2.3交叉验证
2.4外部验证
3.分类模型的常用评价指标
3.1混淆矩阵
3.2准确率
3.3敏感性
3.4特异性
3.5模型选择
3.6格点搜索超参数调优
3.7k折交叉验证
分类模型的实例讲解与练习,以给定数据集为例,讲解基于以上机器学习算法的生物活性或ADMET性质预测模型。引导学员构建自己的数据模型,并用于小分子化合物的活性或ADMET性质预测。
第三天
机器学习与药物发现(回归任务)
1.随机森林回归
2.支持向量机回归
3.XGboost回归
4.多层感知机回归
5.神经网络回归
6.回归模型的常用评价指标
6.1MSE
6.2RMSE
6.3MAE
6.4R2
QSAR/3D-QSAR模型
以给定数据集为例,讲解基于上述几种机器学习算法构建生物活性如pIC50或ADMET性质预测模型。
第四天
深度学习与药物发现
1.深度学习的发展历程与在药物开发中的应用
1.1多层感知机/人工神经网络
1.2基于梯度的学习
1.3反向传播算法
1.4随机梯度下降
1.5卷积神经网络介绍
1.6图神经网络介绍
基于PyTorch的多层感知机算法的实例讲解与练习
以给定数据集为例,讲解基于多层感知机的化合物性质预测模型。
以给定数据集为例,讲解基于卷积神经网络的化合物图像预测分类模型。
以给定数据集为例,讲解基于图神经网络对化合物的毒性分类预测模型
第五天
分子生成模型
1.生成式对抗网络(GANs)的基本原理
1.2生成器
1.3判别器
1.4循环神经网络(RNN)
1.5长短期记忆网络(LSTM)
2.基于上下文的循环神经网络序列建模
3.基于字符串的小分子化合物生成模型
4.基于图数据的小分子化合物生成模型
实例讲解与练习,以给定数据集为例,构建分子生成模型。
案例实操图片: